TITLE	The Development and Implementation of CAMPUS: A Computer-Based Planning and Budgeting Information System for Universities and Colleges.
INSTITUTION	Systems Research Group, Toronto (Ontario).
pub date	Aug 70
NOTE	87 p .
EDRS PRICE	EDRS Price MF-\$0.65 HC-\$3.29
DESCRIPTORS	*Budgeting, Computer Oriented Programs, Educational
	Planning, *Higher Education, *Information Systems,
	*Management Systems, Medical Education, Models,
	*Planning, Resource Allocations
J.DENTIFIERS	*CAMPUS

ABSIRACT
CAMPUS is composed of 4 basic elements. The central element is a computer-based simulation model that is designed to estimate the resource implications of alternative administrative and educational plans and policies. A planning, programming and budgeting system is used to integrate the simulation model into the forinal planning and budgeting processes of the institution. A master planning system is used to interpret the long-range academic and administrative plans of the institution into their implications for physical planning. An integrated management and planning information system is used to support the 3 other elements of campus. This report discusses (1) the development of CAMPUS; (2) the adaptation of CAMPUS to health sciences educational planning, and other developments; (3) CONNECT/CAMPUS, a computer-based college management system; and (4) what the model can and cannot do in terms of general problems, finance, space planning, enrollment, academic planning, teaching methods, and staff planning. The report includes numerous charts and tables. (AF)

THE DEVELOPMENT AND IMPLEMENTATION OF CAMPUS A COMPUTER-BASED PLANNING AND BUDGETING
 INFORMATION SYSTEM FOR UNIVERSITIES AND COLLEGES

SRG
SYSTEMS RESEARCH GROUP
August 1970

252 Bloor Street West
Toronto 5, Ontario
370 Lexington Avenue Tel: (416) 964-8411

New York, N.Y. 10017
Tel: (212) 686-5378

TABLE OF CONTENTS

THE CHALLENGE TO EDUCATIONAL ADMINISTRATORS Page i
A WAY TO MEET THE CHALLENGE Page 2
THE DEVELOPMENT OF CAMPUS Page 3
THE ADAPTATION OF CAMPUS TO HEALTH SCIENCES EDUCATIONAL FLANNING Page 5
UGEDUC - The Undergraduate Education Model Page 6
TRANEE - The Specialty Training Model Page 6
STAFF - The Medical Staff Model Page 6
CIRCUS - Calculation of Indirect Resources and Conversion to Unit Staff Page 7
PRIMER - Patient Record linformation for Medical Education Requirerf:ents Page 7
CIPHER - Calculation of Patient and Hospital Education Resources Page 8
FURTHER DEVELOPMENT OF CAMPUS Page 8
CONNECT/CAMPUS Page 12
The Interactive Prompter and Security System Page 13
The CONNECT/CAMPUS Iriput Routines Page 15
The Information System Page 17
The Simulation Model Page 19

Table of Contents (continued ...)

Subsidiary Analysis Page 21
Statistical Analyses Page 22
The Report Generator arid Analytical Modules Page 22
CONNECT/CAMPUS Input Data Requirements Page 23
An Analysis of a Shift in Enrolment Patterns Page 24
WHAT THE MODEL CAN AND CAINNOT DC Page 28
General Page 28
Finance Paye 29
Space Planning Page 30
Enrolment Page 30
Academic Planning Page 31
Teaching Methods Page 31
Staff Planning Page 32
SUMMARY Page 33
Planning Rather Than Responding Page 33
More Comprehensive Justification of Budgets Page 33
Quicker, Cheaper, Less Tedious Planning Page 34
Aiding Colleges in the Early Expansion Stages Page 35

TABLE OF FIGURES

CAMPUS COMPREHENSIVE ANALYTISITY
ME SYSTEMS
HEALTH SCIENCES RESOURCE REQUIREMENTS Figure 2
SIMULATION MODELS SYSTEMS FLOWCHART... STAFF CONTACT HOURS WITH MEDS UNDERGRADS Figure 3
OVER ACADEMIC YEAR (MEDICINE)....................... STAFF CONTACT HOURS WIT

AMBULATORY PATIENT CONTACT HOURS WITH Figure

HOSPITALIZED PA
MED UNDERGRAD

CONNECT/CAMPUS INTERACTIVE PROMPTER - SIMULA
SUBMISSION (EXPERIENCED USER)

INTERACTIVE PROMPTER
FROM SIMULATION RUN

Tabie of Figures (continued)

A SAMPLING OF CONNECT/CAMPUS TABULARREPCFRTSFigure 12SAMPLE INPUT REPORTS 13
SAMPLE OVER TIME TABULAR REPORTS Figure 14
SAMPLE OVER TIME GRAPHICAL REPORTS Figure 15
SAMPLE ONE PERIOD REPORTS Figure 16
STUDENT POPULATION BY MAJOR DISCIPLINE Figure 17
COSTS PER STUDENT BY MAJOR DISCIPLINE Figure 18
OPERATING COSTS Figure 19
TOTAL SPACE REQUIREMENTS Figure 20
SPACE - STATICN OCCUPANCY Figure 21
ACADEMIC STAFF BY SCHOOL Figure 22
ACTIVITY ANALYSIS (EXCEPTION REPORTING) Figure 23
NET SPACE REQUIREMENTS Figure 24
TOTAL COST Figure 25

TABLE OF TABLES

SCHEMATIC OF INPUT STRUCTURE AND REPORTING Table 1
ACADEMIC STAFF NON-ACTIVITY DUTIES Table 2
AVAILABLE INSTRUCTIONAL SPECIAL LABORATORY SPACE BY COST CENTER Table 3
AVAIL_ABLE COST CENTER SPACE BY SPACE CATEGORY Table 4
ROOM SIZES AND SPACE PLANNING FACTORS - SQUARE FEET PER STAATION Table 5
INSTRUCTIONAL SPECIAL LABORATORY
CHARACTERISTICS BY TYPE Table 6
COST CENTER TEACHING WEEKS AND SFPACE UTILIZATIONS Table 7
MISCELLANEOUS SPACE INPITT Table 8

A. THE CHALLENGE: TO EDUC.ATIONAL ADMINISTRATORS

During the past few years, increasing public aspirations for further education, along with inflation, have caused government expenditures on education to increase at a rate far in excess of the increase in G.N.P. Many educators and planners have warned of an impending "crisis" in educational financing if the recent irend is permitted to continue.

Traditionally, it has been assumed that any improvement in educational service is vorthwhile, and that as such, it should be supported financially from public funds. However, modern government financial management under a program planning and budgeting system dictates allocation of resources among the many services such as education, health, welfare, highways, etc., in proportion to their relative priorities. Consequently, it is now apparent that educational administrators must, in turn, consider their own priorities and alternate means of reaching desired goals.

Unfortunately, traditional methods oỉ educational management have not provided educational administrators with the planning data required for this new challenge. Bundy states the problem as follows:

But what is much more serious is that with the tools now available they cannot really prove
> their case. They simply do not have the facts and figures they need. Let me emphasize that I do not say that the facts and figures do not exist -- I say only that they do not have them. They do not have them for the simple and fundamental reason that as a class neither colleges nor universities, public or private, large or small, old or young, have ever made it their business to learn and to tell the whole story of their resources and their obligations, their income and their expenses, their assets and their debts, in such a way that the publ ic can fully and iairly judge their economic position. 1
B. A WAY TO MEET THE CHALLENGE

CAMPUS ${ }^{2}$ is a system designed to help colleges and universities to gain the maximum educational advantage from the resources which are put at their disposal. Equally, it will help them demonstrate to the public and to government that their needs are real and truly justified.

For over six years now the members of the Systems Research Group have been working on the development of new tools to aid educational administrators. CAMPUS has evolved during this

1 Bundy, McGeorge, "Advice to Educators: Be Candid About Your Money Problems", Think, Jan - Feb 1968, p. 32

2 CAMPUS - Comprehensive Analytical Methods for Planning University Systems. See "A New Tool for Educational Administrators" A Report to the Commission on the Financing of Higher Education by Richard W. Judy and Jack B: Levine, University of Toronto Press, 1965
time. As shown in Figure 1, CAMPUS is composed of four basic elements. The central element is a computer-based simulation model that is designed to estimate the resource implications of alternative administrative and educational plans and policies. A planning, programming and budgeting system is used to integrate the simulation model into the formal planning and budgeting processes of an institution. A master planning system that uses the model and extends its output is incorporated to interpret the long range academic and administrative plans of the institution into their implications for priysical faciiities. The system is also designed to support the architectural design function by relating the academic programs to detailed requirements for physical facilities. An integrated management and planning information system is used to support the other three elements of CAMPUS. It should be emphasized that this information system is not intended to meet day-to-day control and operating needs, but can, by itself, produce much useful and relevant information on past performance.

C. THE DEVELOPMENT OF CAMPUS

The work to develop the system began in 1964 in conjunction with the Bladen Commission Study on the Financing of Higher Education in Canada. A project was carried out to assess the feasibility of
building a simulation model of the University. Using the College ! of Arts and Science at the University of Toronto, a pilot study was undertaken to assess the conceptual specification and data requirements of such a model. The results of this work were published in a report to the Commission on the Financing of Higher Education entitled A New Tool for Educational Administrators. In it, Richard JHdy and Jack Levine concluded that: "Experience gaired ... indicates that the construction of a systems simulation model for a . . . university is a feasible undertaking . . . the . . . project revealed the existence of ample data scattered in various quarters of the university. The data, if gathered into a coherent analytical structure, could greatly assist planners and decisionmakers .. . within ... universities, the simulation model should improve the efficiency of resource allocation and raise the quality of future planning".

The concepts that were developed in the course of the pilot project looked promising and the University of Toronto asked SRG to set up a perminent group, the Office of Institutional Research, to operationalize the concepts and implement them for the Univerisity as a whole. SRG personnel were responsible for organization, staffing and consulting technically to the Office during its development phases. This initial attempt to implement CAMPUS was
arything but a complete success. Problems encountered ranged from politic x^{\prime} and organizational ones in attempting to institute a new way of planning and budgeting to technical ones concerning the design of the simulation system and the available computer facilities. These experiences laid the groundwork through actual experience for the future evolution of the technical and implementation work on CAMPUS.
D. THE ADAPTATION OF EAMPUS TO HEALTH SCIENCES EDUCATIONAL PLANNINE

Beginning in late 1966, SRG analysts were commissioned by the Senior Coordinating Cominittee for Health Sciences Education in Ontario to develop models that could be used in planning for the expansion of the University of Toronto's Health Sciences complex. Government policy necessitated an expansion of the Medical Faculty from 175 to 250 medical students per year. In conjunction with this increased enrolment a number of other factors were to be considered:

- The change from a departmental to an organic systems curriculum
- The allocation of students to various teaching hospitals
- The effect of reducing the number of teaching hospitals or specializing them
- The impact of altering basic parameters, such as teaching group sizes and teaching methods

Abstract

The Systems Research Group established a team of systems analysts, operations researchers and programmers with a Medical Doctor as Director under the Vice-President of Health Sciences in a group called the Health Sciences Functional Planning Unit (HSFPU). A system of CAMPUS models that is oriented towards health sciences was developed to deal with various parts of the problems of planning in a health sciences comple \times in order to evaluate questions such as those mentioned above. Figure 2 outl ines the relationship of the models. The following is a brief description of each of the main models involved in the medical version of CAMPUS:

1. UGEDUC - The Undergraduate Education Model

This model accepts descriptions of the undergraduate teaching program and produces thie resource requirements needed to sustain that program.
2. TRANEE - The Specialty Training Model

This model accepts specifications of the medical specialty training progiram and produces reports on the requirements for staff teaching hours and teaching patient hours needed.
3. STAFF - The Medical Staff Model

This model accepts statements of teaching staff hours for the undergraduate and specialty training programs from

UGEDUC and TRANEE. It also accepts constraints concerning staff pol icy objectives of the departments and staff time profiles. These inpu'cs are submitted to a linear programming model whicin produces statements of the numbers of staff required to meet the various constraints while minimizing on a number of possible objective functions including staff numbers and the academic salary costs.
4. CIRCUS - Calculation of Indirect Resources and Conversion to Unit Staff

This model accepts statements of staff requirements from the linear programming STAFF model and produces reports on teaching and research space, other related indirect resource requirements and dollar costs.
5. PRIMER - Patient Record Information for Medical Education Requirements

This model accepts information on patient contact hour requirements from the undergraduate and specialty training programs, data on the "generation" of patients by the community and other patient care information. These data are combined with medically determined constraints on patient care and their ability to sustain teaching exposure. As output the model calculates the numbers of patients and teaching beds required to sustain the various programs.

6. CIPHER - Calculation of Patient and Hospital Education Resources
 This model computes various patient and patient-care related indirect resource requirements and dollar costs including teaching beds and other teaching hospital resources.

Figures 3 and 4 show some sample analyses that have been run on the impact on staff contact hours with medical undergraduates over the thirty-six weeks of the academic year of increasing enrolment and changing the curriculum. Three different cases were run as shown and from the three departments, Medicine, Paediatrics and Surgery, one sees a very marked difference in the impact of the change in curricula on requirements for staff time. Figures 5 and 6 show the impact of the changes on requirements for ambulatory patients and hospitalized patients.

This type of analysis has been an integral part of the curriculum planning decisions and has led to the development of curriculums that are both desirable from an educational point of view and feasible and efficient from a resource use one.

E. FURTHER DEVELOPMENT OF CAMP:

In 1966, the Ford Foundation gave a grant of $\$ 750,000.00$ to the University of Toronto to do basic research on the CAMPUS techniques. This provided an opportunity to consol ideate the technical
lessons that had been learned over the first three years, and to experiment with new possibilities.

Beginning in January 1969, Systems Research Group undertook a pilot project to develop operational cost simulation and planning models at three of the Colleges of Applied Arts and Technology in Ontario. These models and the data needed to support them, have been developed and are now operating. The three colleges participating in the study were selected as representative of the total system of colleges in the province.

The colleges share the basic aim of training their students in one, two and three year terminal programs in the Applied Arts, Business, Data Processing and Engineering Technology, so that they will be employable within their community upon completion of their program. The colleges are also highly involved in extension and manpower programs, likewise serving the immediate needs of their respective communities. Now in their third year of operation, the colleges are charged with planning in very uncertain environments. Their daytime enrolments range from less than 1,000 to 7,000 at the largest college. Efforts to predict enrolment for the coming years have been at best tenuous, yet all the colleges are now in the process of building permanent physical facilities to accommodate 1,000 to 10,000 students.

The task is complicated not. only by uncertain enrolment, but equally by fluctuations in the students' demand for various types of programs. New programs are constantly being proposed and operating programs being considered for deletion as their poplarity wanes. Many other problems exist because of uncertainties and many decisions have yet to be made. Admissions standards have to be re-examined in view of current extremely high attrition rates. Teaching methods are under experimentation to determine suitable class sizes and examine use of team teaching, audiovisual equipment, closed circuit television lectures. Staffing policies and decisions have yet to be made in many cases and college financing is also still under discussion. The colleges are acting together to work out a suitable formula financing scheme. The project, sponsored by the Ontario Department of Education, had the primary objectives of assessing the potential benefits from the application of these systems simulation techniques to the problems of community colleges and equally, of determining exactly what would be involved in a widespread implementation in the twenty colleges throughout the province.

The pilot study was completed at the end of 1969 and an assessment of its success was carried out by the participating colleges, the Ontario Department of Education and the Systems Research

Group. The result was virtually unanimous agreement that the CAMPUS system is useful and necessary for all twenty Colleges of Applied Arts and Technology in Ontario.

The decision was made to proceed in implementing the system, with certain modifications and extra features added to it. The implementation is now in progress.

The basic components of the system will remain, but will be modified as required. The major extensions on the piiot study are as follows:

1. Modify, improve and further generalize the CAMPUS computer programs, comrnunication systems, reporting and analytical capabilities to serve the needs and peculiarities of all the colleges.
2. Expand the CAMPUS syistem so that its information subsystem includes additional data, specifically, in the student and staff areas:
3. Develop an agreed upon hierarchy of information security for each coilege for each type of information. Develop and implement computer programs that can effect the security system.
4. Develop a set of computer programs and procedures for developing province-wide statistics that can be used by the Department of Education and the colleges. This will include providing an information planning and budgeting capability for dealing with questions concerning the group of colleges as a whole.
5. Develop procedures for arriving at an equitable and defensidle formula financing system, budget submission procedures and comparative system-wide information, using the information system that has been created.

It is this operational and tested system which forms the basis of CONNECT/CAMPUS, a means of making available to colleges and universities the systems that have evolved.

F. CONNECT/CAMPUS

CONNECT/CAMPUS is a computer-based college management system which can quickly and economically perform analyses on historical, current and planning data. The system comprises a series of computer routines or modules that are assembled according to the tasks the user requests. These tasks can vary in complexity from a simple retrieval of historical data to ten year simulations of all aspects of college operations.

The system has been designed to enable a non-technical user to make full use of its capabilities. The user requests all tasks through English based verbal commands irrespective of the complexity of the computer's operation.

A schematic of the total system is illustrated in Figure 7. The system is broken into two main areas: (1) a user system that is completely conversational and (2) a technical system. The top portion of the diagram describes the user system, the part of CONNECT/CAMPUS with which the user interacts. This routine transmits information on what the user wants to do to the system modules. The bottom portion outlines the actual systems modules or routines. Maryy of these routines are optional in that the execution of specific user requests may only use a limited number of them. For example, a request for a report on historical data would use only the REPORT GENERATOR and INFORMATION SYSTEM.

1. The Interactive Prompter and Security Systems

This routine is the interface between a CONNECT/CAMPUS user and the actual operating programs. A user converses with this program by creating input commands which are transmitted to the operating routines.

Before access to the system is allowed, a user must pass
a series of "security" points. He mist have a valid sign-on code; he must be cleared as an individual to access the system; he must know the security code for that particular college. The last two codes can be changed to ensure the continuing security of the system. These codes also allow the college to define specific portions of the system to which each individual may have access. For example, one individual may have access only to space data while another could access salaries and another full budgetary data.

The prompter can operate in either of two modes: (1) it can gradually guide a user from a general area of interest to him to the specification of a particular task. It does this by a series of questions requiring a one word response, (2) it can accept immediate task specification from an experienced user. In both cases, the computer scans user responses for keywords for comparison to a keyword catalogue. The position of a word in the catalogue denotes the task or, at least, which area to proceed to next. The keyword commands are arranged in a hierarchical structure proceeding from the general to the specific. Figures 8,9 and 10 are samples of the kinds of interactive dialogue that occur.

Once the user begins outlining a task his responses are placed in a file that is used later for input to the processing

OI
routines. These user responses are compared with keyword catalogues and data in the information system to ensure that the task specification is complete. A simulation task file would not be considered complete until the user had supplied all of the necessary information such as years to be simulated, file security codes, etc., and the prompter had verified these.

Since the interactive prompter converses in an English language mode with immediate responses, a non-technical user can quickly and effectively perform analyses with no knowledge of the computer system and little knowledge of its capabilities. The interactive prompter operating in an instrictional mode takes time, but as a user becomes more experienced he has the option of bypassing tedious conversations and immediately specifying a complete task.

The information is collected by the system on how it is being used. This information provides the basis for adapting the design to make it easier to use and more efficient. The prompter will serve as the user documentation of the system and can be obtained in hard copy form at any time.
2. The CONNECT/CAMPUS Input Routines

These routines ensure that data to be deposited in the information system are both logical and correct. All input data
are preceded by three verbal commands. Before any data are edited they are sorted by these commands to ensure maximum efficiency in processing. In other words, the routine processes and edits similar data together rather than randomly.

Once data have been sorted they are edited according to several criteria:
. College parameters (i.e. salaries, teaching loads, class sizes, etc., do not exceed college defined minimums and maximums).

- Data fall within system limits.
- Logical checks (i.e. the organizational structure is complete, salaries are attached to specific staff types, etc.).

In order to ensure efficiency in inplit coding and editing, the input routines operate on an "exception" basis. That is, the user can put in a complete set of data or only additional data where exceptions occur from a basic set already stored. For instance, if staff hiring policies are the same for all departments the user would only fill out one coding sheet for one general department and specify that this be applied to all departments unless overridden later.

The data requirements of the system are comprehensive but not overbearing. They fall into four categories:

Description of the Structure of the College

- organizational structure
- academic structure
- physical structure

Present Inventories Of

- space
- staff
- student

Present Decisions and Policies

- staffing
- space used
- administrative procedures
- academic procedures

Future Plans and Suggested Changes

- academic
. administrative

3. The Information System

The information system is the heart of CONNECT/CAMPUS.

All data are deposited in and can only be accessed through the information system.

The information system provides the user with a series of routines or tools for retrieving or storing information concerning a "subject". The information is stored in files that are kept in core or disk or other random access device. The system automatically adjusts to the core size of the computer
system and access frequency to optimize on-line/off-line storage. As more data is added to an existing college informmation system the routine would examine the relative frequency of access of all data elements and possibly reallocate storage.

Data are stored according to subject or keyword at the end of a logical path. The path itself comprises a series of keywords which describe the data; therefore, the user does not have to know complex codes to access data but only need know the keywords. In fact, a user does not have to specify a complete path, only enough keywords to uniquely define that path. Thus, if a user wanted to access all academic staff salaries the keywords STAFF, ACADEMIC, SALARIES, would be sufficient. The keywords STAFF, SALARIES alone would not be sufficient since they do not define a unique path. If the user wanted to access only salaries for full professors his keyword request would be STAFF, ACADEMIC, FULL PROFESSOR, SALARY. The paths and keywords are college specified in that the informmation system allows the college to add or change both path structure and actual data elements stored. Thus the data in the information system could vary from minimal planning data to a complete management information system. The absolute size of the system is limited only by the number of random access devices available at the computer installation.

Abstract

The "subject" storage mode is an important aspeci of the information system design. This concept vastly increases efficiency as long as the task is analysis rather than retrieval of individual student files. If a student file system is used to perform analysis such as distributions by program and age a subject file is superior. If it is used to access only information on a series of individuals, individual storage is superior. The CONNECT/CAMPUS information system will automatically invert files from a subject to an individual system upon request.

4. The Simulation Model

The main CONNECT/CAMPUS planning tool is a simulation model that is capable of representing a specific institution under different acadernic and administrative plans and policies.

The CAMPUS planning model represents a significant advance in planning capabilities. The model contains no built-in biases since it is "data defined". It is not limited by the size of the institucion or the level of aggregation of planning requirements which are automatically assembled according to user requests from the interactive prompter. Only those routines necessary for desired analysis are included.

The cost center structure is a vital part of the simulator. Cost centers are defined as arly points in the organization
which supply resources for teacining or other purposes and for which reports are desired. All cost centers must be related to each other ir, a tree-like structure. At the lowest level of detail a cost center could vary from a department or sub-department, to libraries, cafeterias, or aggregations of these in addition to reporting points such as the total college.

In addition, a budget structure can be defined as well as virtually any program structure. Costs can be obtained by level and type of student, level and type of activity (WICHE discipline costing), by organization unit (traditional budget format) and for the cost of producing a degree. The costing metinodology can be specified by the user. It can vary from direct activity or subject costing to arbitrary allocation of administrative costs. In addition to average cost, marginal costs can also be calculated. This involves the cost of changing from one set of circumstances to another, i.e. the impact of an increase in enrolment and of adding or dropping academic programs.

The simulation model is also flexible with respect to time horizons. A time period can be defined to be as short as one week, although the usual time period is a semester. The degree of detail of the output of the simulation depends on the user definition of this time period and of an activity.

An activity is defined as any academic or administrative event that takes place within an institution and consumes resources. A user could define an activity as an individual course offering or possibly as a group of courses at a higher level of aggregation. Student counselling, health service delivery and examinations could also be defined as activities.

The experimental capabilities are extensive and require no programming and in many cases very little additional data, For example, the statement "INCREASE TOTAL ENROLMENT $+10 \%$ 1970-1975" would increase the enrolment over the planning figure in the data in the system. "DELETE THE MODERN LANGUAGE PROGRAM 1973" would cause the modern languages program to be dropped in the simulated year 1973. Figure 11 contains a sampl ing of the kinds of experiments that can be carried out.
5. Subsidiary Analysis

These subsidiary analyses include space routines which take simulation output in terms of rooms and square feet and convert these to building projects and architectural specifications; subsidiary costing routines enabling the user to structure his costs according to standard costing oriteria: such as. WICHE programs; architectural design routines capable of producing detailed construction cost estimates; information on the best

27
timing and composition of construction projects; the affinity of one space type to another and numerous other architectural design analyses; and formula financing analyses.
6. Statistical Analyses

A standard set of statistical packages is included here:

- Multiple Regression
- Exponential Smoothing
- Complete BMD Package

Information on the information systems, both historical and simulated, can be analyzed using these routines.

All output from the three analytical routines is deposited in the information system under ke:word paths. The user can then report on and analyze this data merely by using the report generator. Since the CAMPUS planning output is part of the information system the user can easily request reports which compare past situations to simulated plans. There is also no need to obtain reports immediately as the results of analyses can be stered and called back at a later date.
7. The Report Generator and Analytical Modules

The CONNECT/CAMPUS report generator routines enable the user to structure his own reports rather than choose from a menu of predefined and perhaps unsuitable reports. The 28
report generator retrieves data from the information system and assembles and analyzes them according to user requests. Since the user has access to his complete data base he can easily structure reports covering any time span or any number of different elements.
8. CONNECT/CAMPUS Input Data Requirements

All input data for CONNECT/CAMPUS must pass through a series of input and editing routines before being placed in the information system. A series of commands indentifies the data contained in each input record and calls in the appropriate edited segments. Once the data have been edited the "clean" data are placed in logical paths in the information system accordirig to these commands.

The data can be entered directly from machine processable records in another information system, from formatted cards or in free format from terminals; in each case they must be converted by routines which insert commands and format it to match the user defined CONNEC7T/ ${ }^{-1}$ AMPUS data structure. This data formatting also aids in producing a series of input reports which converts the data to easily readable report formats.

Each repoint is cross-referenced to an input record on which the data are entered according to a system of command levels. Reference should be made to Table 1, a schematic of input data reports as they relate to the input command level structure of the model.

All input data falls under the level one command, INPUT. At level two the data is subsummed under thirteen verbal commands, each dealing with a specific category of information; SPACE, STAFF, SERVICE, REVENUE and so on. At level three, data are further particularized through a numeric command within each category. Each coding sheet or input record is designed to accept the data required at one level three command.

Tables $2,3,4,5,6,7$ and 8 are samples of the INPUT reports on space information.

9. An Analysis of a Shift in Enrolment Patterns

SRG College is a 7,500 student institution which is expected to grow to about 12,000 students by 1974. The college is divided into three schools of major disciplines: Arts, Science, Business. In the current year the majority of students are enrolled in the Science and Business schools. The registrar and admissions officer predict a major shift away from the

Sciences towards Arts; Figure 17 illustrates forecasted student population by major discipline or schooi. Student population in Arts will increase from 2,000 in 1970 to almost 5,000 in 1974; Business from 2,800 in 1970 to about 3,600 in 1974, and the enrolment in Science will level off at 3,000 students in 1970 and 1971 and then begin to decline by 2,000 by 1974 .

Assuming these enrolment forecasts and constant unit costs (no inflation or salary increases), the planning officer has used the CAMPUS model to calculate both operating costs and space requirernents. Figure 18 illustrates total operating costs and cost per student in major disciplines. It can be seen that a more than doubling enrolment in the Arts discipline has resulted in a cost per student drop by about 30%, while a drop in the Science discipl ine by about one-third resulted in a cost per stuldent increase of about 25\%. Figure 19 illustrates total costs for all disciplines broken out by direct and indirect costs.

Although total costs remain almost constant for the first few years and actually drop in 1974, the amount of the operating cost decrease: is surprisingly small given that there is a strong shift towards Arts, and Arts is assumed to be much less expensive than the Sciences.

Figure 20 illustrates total space requirements for the next five years. First analysis shows that there will not be a space shortage until 1973 and that this shortage will not be severe. But this analysis only compares total square foot requirements with the 1970 inventory and does not take into account the fact that classrooms and labs cannot be substituted for each other. A more realistic analysis shows that there will be a slight space shortage in 1972 which will grow to a shortage of about 250,000 square feet.

Before making any policy decisions the college administration decided to analyze these results in more detail. Figure 21 illustrates station occupancy and space utilization for the years 1970 to 1974. Station occupancy in sizes 25, 40 and 100 classrooms is very low; this is due to the fact that section sizes are not closely matched to room sizes. if section sizes are more closely matched with classroom sizes for the 25, 40 and 100 size classrooms the college should be able to use its existing spaces better and possibly decrease staff requirements and therefore operating costs. Utilization rates are very low for both classrooms and laboratories and this indicates that the college should be able to increase its utilization by better allocation of sections to room sizes and by increasing the length of the teaching week from 35 to 42 hours per week.

Analysis of academic staff in one Science department, Chemistry, shows that Chemistry is overstaffed by 1974. (Figure 22 Base Case). This is due to the fact that staff are tenured and that total staff will only decrease with natural attrition. Thus it is decided that by decreasing section sizes in laboratories and by converting size 30 laboratories into classrooms beginning in 1973 the additional load placed on the Science staff can easily be handied by present staff. Sirice the high cost per student in the Sciences is due in part to the fact that there is a wide proliferation of programs these costs can be reduced by amalgamating some Science programs as enrolment decreases and reducing the number of activities or courses offered.

Administration has decided to test the following policy changes:
. Increase the teaching week from 35 to 42 hours
. Conversion of some size 30 laboratories to classrooms beginning in 1973

- More closely match section sizes in activities to classroom sizes
- Amalgamate technology programs into fewer activities
- Reduce section sizes in the remaining Science activities to size 15

Figure 22 illustrates the effect on academic staff in the Science area. In the base case percentage of staff time which was
unassigned moved from 4% to 19% while in Case 1 the percentage of unassigned time in 1974 was only 9%. This is due to the fact that section sizes were decreased and therefore staff contact hours increased. The effects of program and activity amalgamation is illustrated in Figure 23.

Figure 24 compares space requirements between the Base Case and Case 1, 2. It can be seen that the net space requirements given the new pol icies or assumptions are considerably less than those under the Base Case.

Figure 25 compares total costs for the two cases. Total costs are considerably lower in Case 1 due to the fact that section sizes have been increased in the Arts discipline and reducing academic wtaff costs and lowering support costs. Lower space requirements have resulted in lower mainienance costs, etc.
G. WHAT THE MODEL CAN AND CANNOT DO

The following is a brief summary of the kinds of analysis that can and cannot be done with the simulation model:

General:

Model Can't . forecast exogenous inputs --e.g. data on enrolment or rules on staff workloads

- predict community needs
- evaluate the quality of education
- create alternatives, but does analyze them in economic terms

Model Can:

Finance

Model Can't:

Model Can:

- predict operating and capital allocations from outside sources (except under formula financing)
- control expenditures
- provide detailed cost estimates for the college, division, department, program or activity
. be used under different assumed funding levels to indicate what courses, enrolments and methods can be supported
- be the analytical mechanism of a Planning Programming Budgeting system
- facilitate the preparation of annual budgets and long term growth plans for review by senior authorities
- provide detailed justification of requests for funds, either under present procedures or as a supplement to formula financing

Space Planning

Model Can't: . Say what kind of space should be used in a given program, or set class size

- prescribe certain sizes of offices, etc. for academic and support staff
- lay down policies on ancilliary facilities such as libraries, residences, lounges

Model Can:

- forecast detailed space requirements under alternative situations
- assess the impact on space of changes in teaching methods, enrolment, etc.
- pinpoint overages, shortages and percent utilization of different kinds of space at different future times
- assess the impact of alternatives in future construction
- evaluate the effect, on space needs, of changes in length of each week, computerized scheduling, etc.
- assess the economics of flexibility
- produce information for architects on the affinity of one type of space for others

Enrolment

Model Can't: . predict enrolment (total or by course)

- predict. student choice
- assess promotional effectiveness
. tell about community needs
. forecast success of students

36

Teaching Methods

Model Can't:

- say which methods are pedagogically best
- generate new teaching ideas
- measure student reactions
- help make trade-off analyses of different teaching methods
- highlight the costs of introducing new methods
- calculate how college costs will rise with enrolment given possible changes in methods
. help tie together enrolment, program decisions and available resources into a coherent plan

Staff Planning

Model Can't:
. say what kind of staff should be used

- help recruit staff directly
- evaluate teacher performance
. determine staffing policy
Model Can:
. calculate the requirements for various staff
. take into account alternative staffing policies -- load, tenure, etc.
- analyze the cost of different mixes of staff
- predict future staff work requirements under alternative educational and administrative policies
- calculate future operating costs under different staffing policies and salary scales
H. SUMMARY

In this paper we have outlined the development and use of C:AMPUS and CONNECT/CAMPUS. It might be useful, however, to summarize at this point the advantages of using the system:

1. Planning Rather Than Responding

The ability to experiment with alternative futures should allow the planner to devise plans which are less sensitive to adverse turns of the wheel of fate. The simulation model can be considered a laboratory in which the college administrator can test alternative policies before decisions are made. The experimental results of such tests can provide objective estimates of the resource implications of the competing proposals. This information would be a healthy check on unsupported departmental proposals and bring about more careful planning at all levels. Better knowledge of the cost consequences of alternatives should improve decisions and reduce the number of unfortunate surprises in college planning.
2. More Comprehensive Justification of Budgets

The use of computerized simulation models makes possible accurate and substantiated statements of financial requirements. The heightened credibility of these statements com-
bined with a demonstrable use of improved management tools should improve an instritution's position in supporting sound expenditure of public funds. The results of the simulation can be presented either in traditional budgetary formats, or in such a way as to juxtapose program levels and associated costs. A particular advantage of the system is its ability to compute the incremental costs of altering each activity level. This should facilitate efficient allocation of college resources. An important advantage which appears as a byproduct in the college budget making process is the extent to which the system should reorient top level budgetary negotiations from concentration upon aggregate dollar magnitudes to the underlying decisions which are of more fundamental importance.

3. Quicker, Cheaper, Less Tedious Planning

Laboriously produced master plans are often obsolete before their ink is dry. Simulation models permit continuous planning in response to changed circumstances and opportunities. Finally, the use of such models obviates the investment of scarce managerial time and talent in slow manual computations. Because of a paucity of information, an impending decision of any consequence in the college is likely to initiate a search for new data. Each time this occurs, it places a redundant burden upon academic and administrative personnel
as they strive to supply requested information. Because these data are often supplied under tight time limits, the quality is frequently didbious. Typically, the results of one survey are unavailable or inappropriate to the next. Such a procedure is wasteful and cannot provide uniformly good information. Because it systematically brings together and analyzes information relative to a broad class of problems, the CAMPUS system should reduce this burden of tedious and repetitious paperwork.

4. Aiding Colleges in the Early Expansion Stages

Colleges in the early growth stage stand to profit greatly from the use of simulation models. The range of decision variables is so broad and the importance of early decisions so great that the planners deserve all the assistance that they can get. The design and use of the simulation model in the formative stages of a college may avoid costly errors and raise the return from new educational irvestment.

Central to the entire experiment of using systems analysis to aid university planning and management is the notion that better information in the hands of decision-makers means better information. If for any reason good analysis cannot be accomplished, or if analytical won' is resisted by decision-makers, the effort is
expended in vain. There is often a tendency for analysts with sophisticated analytical tools to wander about in search of problems that fit the tools. This procedure often produces interesting journal articles, but seldom anaything else of value. University systems, like many other real systems, are sufficiently complex to require a substantial investment of hard work and humility before the analyst is able to make a significant contribution. Given these conditions in the present CAMPU'S technology, it is possible to make pronounced improvements in the quality of decisions in higher education, thus bringing about the more efficient utilization of the resources that the universities have at their disposal.
Figure 1
CAMPUS COMPREHENSIVE ANALYTICAL METHODS FOR PLANNING
——_

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline & \text { INTEGRATED INFORMATION SYSTEM } \\ \hline \begin{array}{l}\text { Program } \\ \text { Structures } \\ \text { and } \\ \text { Contents }\end{array} & \text { Students } & \text { Staff } & \text { Space } & \text { Equipment } & \text { Finance } & \begin{array}{ll}\text { Approved } \\ \text { Decisions }\end{array} \\ \hline\end{array} \begin{array}{l}\text { Approved } \\ \text { Future } \\ \text { Plans }\end{array}\right\}$

43

Figure 3
Staff Contact Hours with Meds. Undergrads over Academic Year Studenis per yr. 175 250 250

Curriculum Departmental
Departmental
Ideal System Allocations-66/67 Prop'ns

Proposed 7 Hosp. Proposed 7 Hosp.

ACADEMIC WEEKS

Figure 4
Staff Contact Hours with Meds Undergrads over Academic Year
Students per Yr. 175 250 250
Curriculum- Deparimental Allocationss66/67 Prop'ns

ACADEMIC WEEKS

46

Figure 5

AMBULATORY PATIENT CONTACT HOURS WITH MEDS UNDERGRADS

Students per yr. - 175	250	250
CURRICULUM - DEPART MENTAL	DEPARTMENTAL	IDEAL SYSTEM
ALLOCATIONS -66/67 PROP' NS	PROPOSED	
	7 HOSP.	

,
Academic Weeks
47

Figure 6
 Hospitalized Patient Coñtact Hours with Med Undergrad
 250
 250

ACADEMIC WEEKS

CONNECT/CAMPUS
Figure 7

Figure 8
INTERACTIVE PROMPTER - EXPERIMENT TASK DEFINITION (INEXPERIENCED USER)

WHAT WOULD YOU LIKE TO DO?
? WHAT CAN I DO?

YOU CAN EXPERIMENT, SIMULATE, REPORT, READ ABOUT RECENT FEATURES OR SIGNOFF. PICK ONE.

? EXPERIMENT

WOULD YOU LIKE TO EXPERIMENT ON RESOURCES, ACTIVITIES, ENROLMENT, ORGANIZATION OR FINANCES. PICK ONE.
? WHAT CAN I DO WITH ENROL $A E N T ?$
. ENROLMENT EXPERIMENTS ALLOW YOU TO CHANGE ENROLMENT AT ANY LEVEL FOR ANY TIME PERIOD.
. YOU CAN CHANGE EITHER TOTAL ENROLMENT OR THE DISTRIBUTION AMONG PROGRAMS

- the changes can be eifiher absolute, a percentage CHANGE OR INSERTION OF A NEW VALUE.

DO YOU STILL WANT TO EXPERIMENT ON ENROLMENT?
? YES
AT A SPECIFIC LEVEL OR ALL LEVELS?

? ALL

DO YOU WANT TO CHANGE TOTAL ENROLMENT OR THE DISTRIBUTION AMONG PROGRAMS?
? TOTAL
WHAT SORT OF CHANGE?
? PERCENTAGE
BY HOW MUCH?

Figure 8 (cortinued ...)
$?+35 \%$
FOR WHAT YEARS?
? 1970-1976
DO YOU WANT TO ADD MORE EXPERIMENTS TO THIS FILE?
? NO
PLEASE GIVE THIS EXPERIMENT A FOUR LETTER NAME
? AAAA
IF YOU WANT TO PERFORM A SIMULATION USING AAA REQUEST
A SIMULATION

Figure 9

INTERACTIVE PROMPTER - SIMULATION TASK SUBMISSION (EXPERIENCED USER)

WHAT WOULD YOU LIKE TO DO?

? SIMULATE
WHAT EXPERIMENT FILE WOULD YOU LIKE TO INCLUDE
? AAAA
ANY MORE FILES"
? YES, BBBB
DO YOU WANT TO SPECIFY ANY SIMULATION OPTIONS?
? YES
WHAT OPTIONS?
? OUTPUT ONLY' SPACE, ENROLMENT
ANY MORE OPTIONS?
? SIMULATE BY YEAR NOT TERM
ANY MORE OPTIONS?
? NO
PLEASE GIVE THIS SIMULATION A FOUR LETTER NAME
? TEST
TEST HAS BEEN SUBMITTED. YOU CAN CHECK ITS STATUS BY THE. COMMAND : STATUS TEST
? STATUS TEST
TEST HAS COMPLETED EXECUTION AND TiHE RESULTS ARE IN THE INFORMATION SYSTEM

WHAT ELSE WOULD YOU LIKE TO DO?

TITLE	REPORT N
OPERATING COSTS,	SRG1
LABORATORY STATION OCCUP.	SRG2
LABORATORY SOIJARE FEET	SRG3
LABORATORY ROOMS REOD.	SRG4
LABORATORY CONTACT HRS/WK	SRG5
SPACE. PLANIIIIG FACTORS	SRG6
ENROLMENT	SRG7
CUMIJLATIVE SPACE	SRG8
YEARLLY SPACE	SRG9
OFF: ICE SPACE	SRG10
CLAS ROCM SPACE	SRG11
. LABORATORY SPACE	SRG12
OPERATING BIJDGET	SRG13
COST PER STIJDENT	SRG14

ACADEMIC STAFE. YOU WANT?
WHAT REPORT DO YOU
? SRG 8
FOR WHAT COST CENTERS?
? TOTAL COLLEGE
FOR WHAT YEARS?
? 1969-1977
FOR WHAT PREVIOUSLY RUNN CASES?
? TEST,BASE
ANY MORE CASES?
? NO
WOULD YOU LIKE TO SEE THIS REPORT NOW?
? YES
WHAT WOULD YOUULİKE TO CALL THIS REPORT?
? G2
800no! CUMULATIVE SPACE REQUIREMENTS

SAMPLE CONNECT/CAMPUS EXPERIMENTS

AREA	TYPE OF CHANGE	EXAMPLES
ORGANIZATION	Add or delete	Delete modern languages in 1973
	Economics of splitting into multi-campus; merging departments; creating new departments	Split all English activities into two separate departments, create new campus for all health category programs
ENROLMENT	Sy level	Total enrolment $+25 \%$ 1973; Freshman - 15\% 1971; Modern
	$3 y$ program	L.anguages freshman $+20 \% 1971$
CURRICULA	By program	Add economics 101 to core courses for all liberal arts programs
ACtIVITIES	Change section sizes Change schedule Change credits Change resources	Economics 101 section size $+10 \%$ Economics 101 from 2 to 3 hours per week; Move from classroom and staff to carrels and programmed texts for all mathematics activities
STAFF	Salaries Staff load	Academic $+15 \%$ in 1971; Full professor staffing units +3 1975
	Hiring policies	Hire minimum 50\% associate professors all years
SPACE	Utilization Teaching week Planning factors Manipulation	Classrooms used 45 hours per week instead of 35; All physics laboratories 35 square feet per station. Chemistry, physics lab compatible.
BUDGETS	Capital Operating	Compare requirements to $\$ 2$ million capital budget 1571; Compare staff teaching loads if limited to $\$ 1$ million academic budget in 1972
ENVIRONMENT	Inflation Interest rates Applications	Inflation staff salaries by 7.1\% per year

	Figure 12
REPORT AREA	
SUMMARY REPORTS	
SAMPLING OF CONNECT/CAMPUS TABULAR* REPORTS	

AVAILABILITY

- by activity, department or above - units, dollar costs
- one set of assumptions
- by activity, department or above - hours, square feet, rooms,
- shortages, substitution possibilities - one or more periods, or - one or more set of assumptions - activity, program, department or
- hours, square feet, units, dollars, as applicable - one or more periods, or - one or more set of assumptions

CONTENTS

Detailed breakout by category,
sub-category, size

Figure 12 (cont'd....)

TEACHING SPACE
PROGRAM COSTS
EQUIPMENT

RESCURCE NUMBEA
COMBINATION OF OF
CEDE ACTIVITIES Figure 13 （b）

以

00000000000000000000000000000000000000

00000000000000000000000000000000000000 SUCCESS
FACTGR
PERCENT
SPECIALTY ACTIVITY

nugus
M岂岂岂
COST CENTRE
NODE OT

 ＜

Figure 14 (a)

SAMPLE OVER TIME TABULAR REPORTS

Figure 14 (b)

> CAMPUS COLLEGE

OVER TIME REPORT 1.5 SESSION AVERAGES SUMMARY REPORT

SESSION

1969-70 1970-71 1971-72 1972-73 1973-74 1974-75 1975-76 1976-77 1977-78 1978-75
STAFF
Acr.nf:nis
ACAAFHIIR SUPPORT
mo:-MEMPAIC
servirf.
TOTPL

TOTAL EOUIPIENT COST hisrflianeolis HAINTFPIANC:
total arifregate cost
(TIINUSA!ISS OF DOLLARS)
SPACf.
OFFIG.F
CIRSSROM
I NSTRUCTIOIAL LABORATORY
SPE!!!AL LABDRATORY
SERVICE DFPARTMEAT
TOTAL SPRE!
(SQUARF EFFT)
CAPITAL POSTS
SAPCF. - (ACTUSL DOLLARS)

AFFILIATED Stuntnts
AT THIS C:OST C.F.NTRE.
total

REVEMLH:
total pevfaue funis
INDICATORS
COST PFF STUDENT
(artisal dolilars)
CA'PUS EXPERIMENTS - 1970 SFMINAR SERIES - BASE CASE
1.5

244	349	399	424	424	448	485	521	570	634
33	46	52	52	52	59	59	59	65	72
19	24	24	24	29	29	29	29	34	34
0	0	0	0	0	0	0	0	0	0
296	419	475	500	505	536	573	609	669	740
0	0	0	0	0	0	0	0	0	0
33	60	68	72	73	77	83	88	97	107
0	0	0	0	0	0	0	0	0	0
329	479	543	572	578	013	656	697	766	847

2790 0		4280 0	4480	4560	4810	5110	5410	5940	0050
0	0	0	0	0	0	0	0.	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	J	0	0
2790	3830	4280	4480	4560	4810	5110	5410	5940	6550

Figure 15 (a)

SAMPLE OVER TIME GRAPHICAL REPORTS

63

Figure 15.(b).

dnodg чoxeesəy suәtsis

(e) 91 วunb!a
Figure 16 (b)

Figure 16 (d)
Figure 16 (e)
©

Figure: 17

ERIC

Figure 18

$>$

Figure 20
DO,BASE5
SRG COLIEGE
BASE CASE
TOTAL SPACE REOUIREMENTS * INVENTORY 1970

- REQUIREMENTS (NET)
- REQUIREMENTS (NON-TRANSFERIBILITY BETWEEN TYPES)
$1400!$
$\begin{array}{ll}5 & ! \\ 0 . & 1300!\end{array}$

ERIC
70
71

Figure 21

DO,BASE7

STG COLLEGE BASE CASE
TEACHING SPACE-UTILITATIION (TEACHING WEEK =35 HOURS)

Figure 22

Figure 23

DO.BASEE 10
SRG COLIEGE
(EXCEPTION REPORTING)

DISCIPLINE: CHEMY¢TRY YEAR: 2 TERM: SPRING 1974								
BASE			case 1				NO	HRS WECK
ACTIVITY CODE	SECTION DESIRED	SIME actial	NO.	hours WEEK	$\begin{array}{r} \text { SE } \\ O E S I \end{array}$	ON SITE ACTIJAL		
CH20:	22	3	2	B	30	29	6	24
CH207	22	120.	4	16				
CH209	15	13	5	20				
CH211	15	12	3	'12	15	14	6	24
CH212	24	17	2.	8				
CH216	26	19%	5	20	13	15	12	48
CH22?	24	20	3	9				
CH2? 4	13	12	5	25	15	14	11	44
CH2: 7	23	10	3	12				
CH230	18	16	4	16				

TOTAL

Figure 24

DD.BASE9

Figure 25
DCDBASE 11
SRG COLLEGE

๔

ERIC
0
83

TABLE 6

採。

